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ABSTRACT

Resource polymorphism in vertebrates is generally underappreciated as a diversi-
fying force and is probably more common than is currently recognized. Research
across diverse taxa suggest they may play important roles in population divergence
and speciation. They may involve various kinds of traits, including morphological
and behavioral traits and those related to life history. Many of the evolutionary,
ecological, and genetic mechanisms producing and maintaining resource poly-
morphisms are similar among phylogenetically distinct species. Although further
studies are needed, the genetic basis may be simple, in some cases under the con-
trol of a single locus, with phenotypic plasticity playing a proximate role in some
taxa. Divergent selection including either directional, disruptive, or frequency-
dependent selection is important in their evolution. Generally, the invasion of
“open” niches or underutilized resources requiring unique trophic characters and
decreased interspecific competition have promoted the evolution of resource poly-
morphisms. Further investigations centered on their role in speciation, especially
adaptive radiation, are likely to be fruitful.

INTRODUCTION

Resource-based or trophic polymorphisms are likely more common and of
greater evolutionary significance than is currently appreciated. Work on di-
verse taxa suggests that these polymorphisms, in which discrete intraspecific
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morphs show differential resource use and often varying degrees of reproductive
isolation, may represent important intermediate stages in speciation (14, 150,
190). Many of the mechanisms and conditions that produce and maintain re-
source polymorphism are similar, even among highly divergent taxa (150).
Yet, until recently, little effort has gone toward examining this phenomenon
across different taxonomic groups. For example, important studies on resource
polymorphisms involving fishes, amphibians, and birds have been published in
recent years, but there have been few comparisons of the processes involved
(but see 51, 56, 150, 197). In this review we summarize the diverse nature
of the phenotypic differences involved, and through selected examples explore
the ecological and evolutionary implications of this phenomenon. We hope to
promote an integrative cross-taxon approach to the study of resource polymor-
phisms and greater efforts toward identifying additional examples. Numerous
other examples likely exist, but because discrete phenotypes may be subtle,
they are easily overlooked or discounted. We do not review sex-based poly-
morphisms because they are beyond the scope of the present review. We begin
by describing the nature of resource polymorphisms in each taxon, then we dis-
cuss circumstances and mechanisms maintaining them, and finally we discuss
their evolutionary significance.

TYPES OF ALTERNATIVE ADAPTIVE PHENOTYPES

We define resource polymorphisms as the occurrence of discrete intraspecific
morphs showing differential niche use, usually through discrete differences in
feeding biology and habitat use. Morphs may differ in morphology, color,
behavior, or life history traits, and in many instances they may differ in more
than one characteristic (Table 1).

Fishes
Many examples of resource polymorphisms appear across diverse fish taxa,
including mostly freshwater and anadromous fishes. Resource-based morphs of
fishes may differ in behavior, life history, morphology, and color, and they may
coexist within the same freshwater system, i.e. they are intralacustrine (155)
and may even be found within small landlocked lakes. Frequently, different
forms show varying degrees of reproductive isolation, even to the level of being
classified as distinct biological species (56, 133, 141). Since the segregation
among some of these forms is clearly correlated with resource use and represents
part of a continuum, we include them in our discussion.

Resource polymorphisms in fishes are common in lakes in recently (10,000–
15,000 years) glaciated areas of the northern hemisphere (127, 141). The arctic
charr (Salvelinus alpinus), a circumpolar salmonid, often has from two to four
sympatric intralacustrine resource morphs. Morphs differ in adult body size and
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shape, and in life history characteristics (e.g. 49, 66, 68, 69, 105, 122, 125,
147, 167, 188). In some cases resource segregation is clear and stable, such as
between benthic and limnetic habitats (79, 135), while in other cases, habitat
and food segregation are less dramatic and often seasonal (57, 125, 168, 188).
The degree of phenotypic differences may also differ among lakes (148, 167).
For example, in Thingvallavatn, a lake in Iceland where resources are unusually
well defined and discrete (67), four morphs display substantial behavioral, life
history, and morphological differences (69, 78, 152, 167). The lake has an
extensive littoral zone made structurally complex by volcanic substrate. A small
benthivorous charr (7–22 cm long) occupies the subbenthic habitat consisting
of porous volcanic rubble, while a large benthivorous charr (20–50 cm) occurs
in the epibenthic habitat. Both morphs specialize on snails. In addition, there
are two limnetic morphs, one smaller (14–22 cm) and planktivorous, the other
larger (adults 25–60 cm) and piscivorous (37, 79). The limnetic morphs also
have more streamlined bodies, more pointed snouts, and more gillrakers than
do the benthic morphs (78, 153, 167). Some spatial and temporal variability in
spawning among the morphs can be related to their diet and the availability of
spawning grounds (152), and some evidence suggests assortative mating (146).
Molecular genetic studies, combined with the distribution of morphs in other
lakes, show that the morphs are closely related and arise locally, with benthic
forms derived from the more common limnetic form (148, 167; see also 59).

In whitefish (CoregonusandProsopiumspp.), numerous examples of intrala-
custrine forms are found in Europe and North America (76, 170). As in arctic
charr, the degree of discrete differences among sympatric whitefish forms in
resource use and morphology varies among lakes (e.g. 2, 9), but morphs are
typically benthic or limnetic. They may differ in adult size and other life history
attributes and in morphology such as jaw length and bluntness of snout (76,
83). The number and morphology of gillrakers (associated with type of prey)
have most commonly been used to discriminate forms, which can reach five
within a single lake (2, 9, 33, 76, 80, 170). An extensive molecular genetic
survey in North America suggests that morphs may be genetically divergent
within single lakes but do not represent separate invasions from adjacent rivers
or lakes (10, 70; but see 5).

The Pacific salmon (Oncorhynchus nerka), native to the northern Pacific
Ocean, exhibits two morphs, the anadromous sockeye and the nonanadromous
kokanee. The former typically spends the first year in a lake before migrat-
ing to the ocean, whereas the latter remains in lakes throughout its lifetime
(5, 35). Kokanee matures at a smaller body size and often at a younger age
than sockeye, and where they coexist, they may display distinct morphological
differences such as more gillrakers in the former (35, 99, 198). Kokanee have
originated from sockeye independently and repeatedly. For instance, kokanee
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Table 1 Resource polymorphisms in selected vertebrate species and the nature of the ecological segregation
among morphs

Nature of discrete
Species ecological differences PDa References

FISHES
Arctic charr (Salvelinus

alpinus)
Benthivory, planktivory, piscivory,

and migration
m,b,l (47, 49, 57–59, 66, 69, 79,

105, 106, 122, 125,
149, 153, 167, 168,
188)

Atlantic salmon (Salmo salar) Migration l (8, 183)
Brown trout (Salmo trutta) Benthivory, planktivory, piscivory,

and migration
m,b,l (34, 87, 127)

Brook charr (S. fontinalis) Benthivory, planktivory, swimming
activity

m,b (7, 43, 84)

Sockeye salmon
(Oncorhyncus nerka)

Benthivory, planktivory, and
migration

m,b,l (35, 127, 198)

Coho salmon (Oncorhyncus
kisutch)

Lake versus stream habitat m,b (172)

Lenok (Brachymystax lenok) Benthivory, planktivory, and
piscivory

m,1 (71, 110)

Lake whitefish (Coregonus
clupeaformis)

Benthivory, planktivory, piscivory,
and migration

m,b,1 (9, 27, 33, 76, 127, 141,
185, 197)

Least cisco (Coregonus
sardinella)

Benthivory, planktivory m,1 (80)

Pygmy whitefish (Prospium
coulteri)

Benthivory, planktivory, m,1 (76, 83, 197)

Scandinavian whitefish
(Coregonusspp.)

Benthivory, planktivory, and
piscivory

m,b,1 (27, 127, 141, 197)

Rainbow smelt (Osmerus
mordax)

Benthivory, planktivory, piscivory,
and migration

m,b,1 (175)

Stickleback (Gasterosteus
aculeatus)

Benthivory and planktivory m,b (23, 86, 127, 141, 197)

Bluegill sunfish (Lepomis
macrochirus)

Benthivory and planktivory m,b (28, 29, 127, 197)

Pumpkinseed sunfish
(Lepomis gibbosus)

Benthivory and planktivory m (127, 128, 197)

Tui chub (Gila bicolor) Benthivory and planktivory m (39, 127)
Cichlids (Perissodusspp.) Eating scales from left versus right

side of live fish
m (63)

Cichlid (Cichlasoma
minckleyi)

Feeding on snails and plant material m,b (72, 74, 127, 197)

Cichlid (Cichlasoma
citrinellum)

Feeding on snails and soft-bodied
prey

m,b (90–92, 127, 197)

Cichlid (Astatoreochromis
alluaudi)

Feeding on snails and soft-bodied
prey

m (46, 94)

Goodeid fish (Ilyodonspp.) Strong indication of differences in
food (lake form)

m (48, 127, 182, 197)

(Continues)
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Table 1 (Continued)

Nature of discrete
Species ecological differences PDa References

Neotropical fish (Saccodon
spp.)

Different techniques in eating algae m (126, 127)

AMPHIBIANS
Salamanders and newts

Notophthalmus v.
viridescens

Habitat, metamorphosing m,1 (55)

N. v. dorsalis Habitat, metamorphosing m,1 (53)
Taricha granulosa Habitat, metamorphosing m,1 (81)
Ambystoma tigrinum Habitat/diet, cannibalism m,1 (19, 22)
A. talpoideum Habitat, metamorphosing m,1 (54, 112, 143, 144)
A. lermaensis Habitat, metamorphosing m,1 (145)
A. amblycephalum Habitat, metamorphosing m,1 (145)
A. rosaceum Habitat, metamorphosing m,1 (17, 145)
A. ordinarium Habitat, metamorphosing m,1 (3, 145)
A. gracile Habitat, metamorphosing m,1 (145)

Frogs and toads
Spadefoot toad (Scaphiopus

multiplicatus)
Omnivory, carnivory, and

cannibalism
m,1 (113, 115, 119)

Pacific treefrog (Pseudacris
regilla)

Habitat selection by color morphs m,b (97)

BIRDS
Pacific reef heron (Egretta

sacra)
Differences in hunting techniques

associated with color
m,b (130)

Little blue heron (Egretta
caerulea)

Foraging success and vulnerability to
predators

m,b (16)

Buteohawks Proposed differential hunting success
of color morphs

m (129, 131)

Hook-billed kite
(Chondrohierax
unicinnatus)

Feeding on different size tree snails m (164)

Oystercatchers (Haematopus
ostralegus)

Different feeding techniques on
mussels

m,b (40, 64, 107, 169)

Woodcock (Scolopax
rusticola)

Ecological correlates of different bill
types unknown

m (12)

Blackcap warbler (Sylvia
atricapilla)

Differences in migratory behavior b (6)

Robin (Erithacus rubecula) Differences in migratory behavior b (6)
Seedcracker (Pyrenestes

ostrinus)
Feeding on soft- and hard-seeded

sedges
m (156, 160, 162)

Cocos finch (Pinaroloxias
inornata)

Feeding behavior, food type b (189)

Darwin’s Finch (Geospiza
conirostris)

Diet, ephemeral in population m,b (44)

aPD, Phenotypic difference; m, morphological; b, behavioral; and l, life history.
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have appeared after sockeye were introduced to lakes previously lacking the
species (35). The timing and locality of spawning may or may not differ (73),
but molecular genetic studies suggest that distinct genetic differences exist be-
tween sympatric morphs (35) and that intralacustrine morphs arise locally (35,
176). In the volcanic lake Kronotskiy in Kamchatca, benthic and limnetic
morphs of kokanee differ in the number of gillrakers and show spatial and
temporal segregation in spawning (73).

Rainbow smelt (Osmerus mordax) exhibit extensive life history diversity
throughout northeastern North America. There are both sea-run and lake-
resident populations, with the latter often diversified in single lakes into dwarf
and normal-sized forms. The dwarf smelt, which is limnetic, has more gillrakers,
larger eyes, and a shorter upper jaw than the normal benthic piscivorous form,
which is similar in morphology to anadromous smelt (175). In two of the study
lakes, molecular genetic analysis showed that forms are reproductively isolated
and that the segregation had occurred independently within each lake (175).

The pumpkinseed (Lepomis gibbosus) and the bluegill sunfish (L. macro-
chiru) co-occur and occupy distinct niches in many North American lakes. The
adult bluegill is an open-water planktivorous generalist, while the pumpkinseed
specializes on snails and occurs in shallow water (128). In a lake where the
pumpkinseed is rare, a shallow water morph of bluegill is found coexisting with
the typical open-water form. The shallow-water morph has a deeper body and
longer fins than the open-water form. Clear differences appear between morphs
in the flexibility of their feeding behavior, which correlates with differential
foraging success in their respective habitats (28, 29). In lakes where only
pumpkinseeds occur, they may segregate into two morphs, differing in the
structure of gillrakers and body shape; the typical form feeds on snails, and an
open-water form seemingly occupies the bluegill niche (128). Morphs tend to
breed in somewhat different habitats (128). The phenotypic differences of the
sunfish morphs are relatively subtle and went unnoticed in numerous ecological
studies (29, 128).

The threespine stickleback (Gasterosteus aculeatus) is widely distributed
in coastal regions throughout the northern hemisphere, occurring in marine,
brackish, and freshwater and expressing a variety of ecological forms. In six
small landlocked lakes in British Columbia, Canada, pairs of limnetic and
benthic forms coexist, showing a high degree of ecological segregation. The
limnetic form is slim-bodied with many long gillrakers and a narrow mouth,
while the benthic is larger, deep-bodied, with a few short gillrakers and a
wide mouth (86, 88, 140). The pairs show positive assortative mating (86,
124), but there is a persistent low level of hybridization. The forms are thus
recognized as good biological species that evolved after the last glaciation
(86). Research shows that they may represent two separate invasions that have
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subsequently diverged (86), sympatric divergence, or both (177). Benthic and
limnetic stickleback morphs were recently identified in a lake in Alaska; they are
believed to have arisen sympatrically (23). Morphological differences between
them are much less pronounced than those between the species pairs in British
Columbia, and the percentage of intermediate forms is much higher.

Cichlid fishes are celebrated for their high species richness in lakes of the
African rift and in Central America (27, 38).Cichlasoma minckleyiof Cuatro
Ciénagas, Mexico, exhibits two morphs, one vegetarian and the other feeding
on snails. The former has a narrow head, long intestine, and small papilliform
pharyngeal jaw dentition. The latter has short intestines, a wider head, stouter
jaw, and larger molariform pharyngeal teeth, used for crushing snails (72, 74,
134). That the morphs interbreed is clear from molecular genetic and spawning
ground studies (72 , 134). Behavioral trials show that feeding segregation of
morphs is most pronounced when resources are limited (74). Another cichlid
(Cichlasoma citrinellum) has similar morphs in Nicaraguan lakes, as does an
African cichlid (Astatoreochromis alluaudi) found in East Africa (46, 90–92).
In general, variability in jaw morphology is frequently noted in African cichlids
(197), and it has been suggested that some of the numerous species that have
been described in the African lakes represent resource morphs (72, 94). A clear
case of resource polymorphism with little or no genetic isolation is seen in the
scale-eating cichlidPerissodus microlepisin Lake Tanganyika. Morphs exhibit
right- and left-handedness in jaw morphology; the former removes scales from
the prey’s left side, while the latter removes scales from the prey’s right side (63).

Amphibians
Studies investigating adaptive plasticity in amphibian metamorphosis have pro-
vided important information on the relative costs and benefits of alternative
adaptive phenotypes (20, 101–104, 192). Amphibians may be polymorphic
with respect to metamorphosis, with some populations exhibiting both aquatic
and metamorphosed adults (3, 17, 102, 144) (Table 1). Larval morphs may
differ in numerous cranial and postcranial structures such as teeth, jaw muscu-
lature, and body size (11, 109, 197), intestine length (115), and age and size at
metamorphosis (22, 115), some relating to whether they are carnivorous (often
cannibalistic) or omnivorous.

In the New Mexico spadefoot toad (Scaphiopus multiplicatus), rapidly de-
veloping cannibalistic morphs grow larger than more slowly developing omniv-
orous morphs. Carnivorous tadpoles differ from typical omnivorous larvae in
their hypertrophied jaw musculature, fewer teeth, decreased melanization, and
shorter intestine (109, 119). All these characteristics may be induced during
metamorphosis in anurans by exposing them to thyroid hormone (31, 36, 50,
52).
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Polymorphisms in trophic structures also occur in some subspecies of lar-
val and adult tiger salamanders (Ambystoma tigrinum) (18–20, 22, 118, 120,
132). Morphs may differ in maturation patterns; these may include retention
of larval characteristics at sexual maturity in aquatic habitats (paedomorphosis
via neoteny), or metamorphosis and sexual maturation in terrestrial habitats.
Larval forms include “typical” morphs, which feed on zooplankton and other
invertebrates, and cannibalistic morphs, which feed on both invertebrates and
conspecifics (20, 22, 60, 77, 118). Relative to the typical morph, cannibalistic
morphs are characterized by broader heads and mouths with enlarged vomerine
teeth, adaptations apparently evolved for feeding on conspecifics (22, 118).
Three morphs occur in adults, including metamorphosed, typical branchiate,
and cannibal branchiate (21, 22), but there are few studies showing ecological
differences among these morphs. Many species ofAmbystomavary in their
propensity to metamorphose (Table 1), a variation resulting in obvious differ-
ences in resource use (terrestrial vs aquatic). For example, mostA. talpoideum
larvae metamorphose into terrestrial juveniles or adults, while in other popu-
lations individuals retain a larval morphology and reproduce as paedomorphs
(112, 142).

That some color polymorphisms include a resource component has also been
documented. These involve predation avoidance and use of differing micro-
habitats by being cryptic, although such examples are somewhat more difficult
to demonstrate (100, 121, 180). For example, microhabitat selection by green
and brown color morphs of the Pacific tree frog (Pseudacris regilla) appears to
occur in response to predation (97).

Birds
Trophic morphs in birds may show differences in morphology, behavior, or a
combination of both (Table 1). Bill-size morphs of the African finchPyren-
estes ostrinusfeed on sedge seeds which differ in hardness. Morphs with small
bills feed more efficiently on soft seeds, while the large-billed morphs do so on
hard seeds (157–163). Studies of reproductive behavior indicate that finches
mate randomly with respect to bill size (156, 157, 163). Different bill types
of the hook-billed kite (Chondrohierax uncinatus) appear to be related to feed-
ing on different size/age classes of tree snails (164), while in the oystercatcher
(Haematopus ostralegus), differences in bill morphology are correlated with
differences in feeding behavior and arise by differential wear of the bill. “Stab-
bers” have pointed bills and feed on mussels by inserting their bill between the
valves, while “hammerers” exhibit blunt bills and break shells open by pound-
ing (40, 107, 169). The frequency of morphs may also change seasonally as a
function of differential wear imposed by dietary switches (64). An example of
a behavioral polymorphism that has given rise to differential discrete niche use
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is seen in the Cocos Island finch (Pinaroloxias inornata). While the popula-
tion exhibits little morphological variation, individuals show a diverse array of
feeding behaviors, equivalent to those of several families of birds (189). The
common color polymorphisms in herons may be maintained by differences in
morph crypticity related to foraging mode (61, 98). Differences in habitat and
foraging mode have been best documented between morphs of the Pacific reef
heron (Egretta sacra), in which dark morphs employ a “standing and waiting”
or “running mode” in shallow water, while the white phase employs a “flight-
freeze” in breaking surf. It is believed that the white phase is more cryptic to
prey in breaking surf and the dark phase more so in shallow, calmer waters
(130). Experimental evidence for differential hunting success of color morphs
is presented by Mock (96). Mock found that more fish were captured near
models of white herons than around dark herons when the models were placed
in shallow water on sunny days where herons typically forage. This experi-
ment supports the assertion that the white form is more cryptic to fish when
viewed against a clear sky. In general, however, although color polymorphisms
are widespread in birds (15, 65), relatively few examples exist in which color
morphs use resources differently.

Behavior polymorphisms with a demonstrated genetic basis include migra-
tion tendency in populations of two European birds, the blackcap (Sylvia atri-
capilla) and the robin (Erithacus rubecula) (6). Some populations show bi-
modality in migration behavior, in which some individuals are resident and
others are migratory. While the evolutionary significance is unclear, it is likely
to be resource-based (6). Some resource polymorphisms may be ephemeral in
nature, such as in the case of the Darwin’s finch,Geospiza conirostris, on the
island of Genovesa in the Gal´apagos Islands (41, 44, 45). Males during one sea-
son were found to exhibit two discrete song types, while the male of each type
differed in bill length and foraging mode. Longer billed, song A males, fed on
Opuntiacactus flowers, whereas shorter billed, song B males, spent more time
feeding on rottingOpuntiapads where they obtained larvae and pupae. While
some initial evidence suggested assortative mating, morphological differences
soon disappeared through random mating (41, 42).

ECOLOGICAL CIRCUMSTANCES THAT PROMOTE
RESOURCE POLYMORPHISMS

Open Niches, Habitat Variability and the Relaxation of
Interspecific Competition
From the examples discussed thus far, two circumstances appear fundamen-
tal in promoting resource polymorphisms: the existence of “open niches” or
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underutilized resources, and a relaxation of interspecific competition. Re-
sources in many young lakes in the northern hemisphere are discrete, and fish
tend to occur in either benthic or limnetic habitats (127, 141). For exam-
ple, pumpkinseed and bluegill sunfish occupy distinct ecological niches where
they co-occur; however, where only the pumpkinseed occurs, it has differen-
tiated into two morphs (128). In whitefish the presence of competition may
be inferred from morphology (76). Limnetic morphs ofCoregonuswith high
gillraker counts are not found where the highly specialized cisco (Leucichthys)
is present, and limnetic forms ofProsopiumare not found where both of the
other genera are present (76). Similarly, morphs of arctic charr are found where
competing species are few or absent (78, 122). For instance, in Iceland, where
only three species of fish are common in lakes, unusually diverse arctic charr
morphs have evolved, taking advantage of most available habitats and resources
(79, 127, 148, 152, 153, 167). Similarly, typical and cannibal morphs of tiger
salamanders occur primarily where resource competitors and potential preda-
tors (fish) are relatively few (22). The lack of interspecific competition and the
occurrence of an “empty niche” is also likely operating in the endemic Cocos
island finch. Existing on an isolated oceanic island, much like a species of
fish existing in a landlocked lake, and lacking interspecific competitors, this
finch has diversified intraspecifically, exhibiting an array of distinct foraging
behaviors typical of different species (189).

Habitat diversity and distinctness of resources can play an important role in
fostering resource polymorphisms. For instance, volcanic lakes offer diverse
and complex benthic habitats, often associated with subbenthic spaces, fissures,
and caves rich in invertebrate prey for fish to exploit. Trophic adaptations in
benthic charr morphs are clearly associated with subbenthic volcanic habitats
(135, 148, 167). It is probably therefore not a coincidence that fish morphs and
recently evolved species flocks are often found in volcanic-, rift-, and crater
lakes as well as in recently deglaciated lakes (27, 67, 72, 93, 95, 137, 155, 167).

The Role of Specialization
Resource polymorphisms may also arise in some species-rich environments if
resources are unique and require specialized traits to use. This appears to be the
case in the finchPyrenestes ostrinus,in which each morph specializes on sedge
seeds differing in hardness, even though they occur in equatorial Africa, a region
rich in granivorous birds species (156, 160–163). In this case, the resource on
which these finches specialize is not used by other species. Cracking hard sedge
seeds requires very specialized, broad, stout bills that sympatric granivorous
species lack (162, 163). Because the most closely related species of finches have
small bills, similar in size and shape to the small morph, it is believed that larger
billed morphs have evolved from small billed forms by specializing on harder

A
nn

u.
 R

ev
. E

co
l. 

Sy
st

. 1
99

6.
27

:1
11

-1
33

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
T

ex
as

, A
us

tin
 o

n 
07

/0
5/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.



     September 23, 1996 17:2 Annual Reviews SMITCHPT AR19-04

RESOURCE POLYMORPHISMS 121

seeded sedge species (162). This is similar to the situation in the oystercatcher in
which initial specialization on intertidal mussels seems to have given rise to even
greater specialization, resulting in discrete feeding modes and a dimorphism
in bill morphology (40). Another example in which specialization may lead
to utilizing new resources is seen in the Lake Tanganyikan scale-eating cichlid
fish (62, 63). Morphs are either left-handed or right-handed in the direction of
mouth opening. In all three instances, specialization is associated with utilizing
new, previously underexploited, resources.

Behavioral specialization of individual fish (cf 25), even at a very early age,
may play an important first step in segregation. For example, variability in early
behavior in the Atlantic salmon influences foraging and thus growth and later
life history (88, 178); varying levels of flexibility in foraging behavior have
been identified as key features in some polymorphic systems (7, 28, 29, 43, 47,
79, 84, 89, 90, 153, 197).

MECHANISMS MAINTAINING RESOURCE
POLYMORPHISMS

Modes of Selection
Disruptive and frequency-dependent selection may play important roles in
maintaining resource polymorphisms. A dramatic example of frequency-
dependent selection is found in the Lake Tanganyika scale-eating cichlid fish.
The frequency of right-mouthed and left-mouthed morphs fluctuated around a
ratio of 1:1 over a ten-year period. Apparently individuals of the rarer morph
are at a selective advantage because they are more successful in snatching scales
from the flanks of prey (63). In New Mexico, omnivorous and carnivorous lar-
val morphs of the spadefoot toad coexist in ephemeral ponds. Because of its
faster developmental rate, the carnivorous morph is favored in short-duration
ponds, but in longer-duration ponds, the slower-developing omnivorous morph
is favored because its larger fat reserves enhance postmetamorphic survival.
In ponds of intermediate duration, the abundance of each morph is frequency
dependent (113, 115, 119).

In the African finch,Pyrenestes ostrinus,disruptive selection is most intense
in juveniles (158, 161). Fitness peaks are associated with small and large
morphs and correspond to performance peaks on soft- and hard-seeded sedges
(162). In these finches, individuals at the extremes of each morph exhibit
lower feeding performance and survival. Selection appears to be most intense
following the major dry season, when food availability is low (160, 161).

Studies on the limnetic and benthic pairs of threespine stickleback in British
Columbia show that the different forms have relatively higher feeding
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performances and grow best in their respective habitats, while hybrids do poorly
in either habitat, suggesting selection against hybrids (139). Similarly, stud-
ies of early development suggest that hybrids of sockeye and kokanee suffer
higher mortality than do pure lines (198). Behavioral studies on other fish
species almost exclusively show that performance of each morph is positively
correlated with the resource it utilizes (28, 29, 78, 90, 153, 193). In gen-
eral, divergent selection (selection against intermediates) in the evolution of
sympatric morphs and/or new species of freshwater fish is likely the result of
intraspecific competition for food between phenotypically similar individuals.
Subsequent, increased phenotypic divergence of sympatric forms would lead
to reduced competition between them (74). This has recently been thoroughly
discussed in the context of character release and displacement (127, 138, 140,
141, 173).

Phenotypic Plasticity, Induction, and Genetic Basis
Distinct morphological phenotypes may result from phenotypic plasticity (136,
184, 191). For example, cannibalistic and paedomorphic morphs of tiger sala-
manders and spadefoot toads arise through a developmental response to varying
densities of conspecifics and food type (19, 111, 113–115, 117, 119). In tiger
salamanders, morphogenesis is also responsive to kinship, with mixed broods
more likely to develop the cannibal morphology than full-sib groups (116).
Similarly, food type and quality change trophic morphologies in species of ci-
chlid fishes (89, 194–197) and in pumpkinseed sunfish (187). In fishes,varying
degrees of plasticity in foraging behavior and technique within and among
morphs (28, 29, 74, 78, 90, 153) may lead to greater morphological special-
ization, which in turn channel the array of behavioral possibilities (90, 197).
Similarly for oystercatchers, behavioral flexibility in feeding on discrete re-
sources results in a bill dimorphism (40, 169). Life history among morphs is
often highly plastic in fish, depending on food and habitat (58, 106, 151, 165,
166, 186). Such differences may depend on variability in foraging and social
behavior, even very early in life (47, 88, 178).

The relative contribution of heredity and environment to phenotypic differ-
ences in fishes seems to vary not only among species but also among popu-
lations. The relative contribution varies among lakes in arctic charr (58, 106,
149, 151, 153, 171) and, based on rearing experiments, among forms in white-
fish and MexicanIlyodon (179). In contrast, morphological differences in
species pairs of threespine sticklebacks in British Columbia have a strong ge-
netic component (85, 86), but environmentally induced effects on morphology
may accentuate their segregation. In the wild, the limnetic form has a more
variable diet than the benthic form, and this is associated with relatively greater
morphological plasticity in the former (24). Similarly, it is likely that both
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foraging behavior and growth patterns are less plastic in small benthivorous
charr than in planktivorous charr in Thingvallavatn (78, 151, 153). The latter
occupies a more temporally unstable niche than does the former, and long-term
life-history studies of planktivorous charr show great fluctuations among year
classes in growth and maturation patterns (165, 166).

In general, the genetic basis behind most resource polymorphisms is poorly
understood. Both the bill size polymorphism inPyrenestes ostrinusand hand-
edness in the scale-eating cichlids appear to be determined by one locus with
two alleles (63, 162). Moreover, the simple genetic control of at least some
polymorphisms suggests that reaching new adaptive peaks may occur through
mutations of large effect (108). To what extent other resource polymorphisms
are controlled by one or a few loci will require further study.

While most alternative morphs are conditional and nonreversible, a few show
reversible plastic phenotypes (90, 91, 115). In the cichlidCichlasoma citrinel-
lum, individual morphology may change reversibly in different seasons, de-
pending on the kind of food available (91), a situation similar to that found
in the oystercatcher, discussed earlier. While switches based exclusively on
phenotypic plasticity seem to have evolved in unstable environments (22, 106,
115), switches under strong genetic control (63, 156, 158, 160, 162, 163) seem
to evolve under relatively more stable environmental conditions. However,
the determination of the role and importance of environmental stability re-
quires further work. For example, common garden experiments involving the
salamanderAmbystoma talpoideumsuggest that some populations have evolved
phenotypic plasticity with respect to the tendency to metamorphose as ponds
dry, while others show a genetic polymorphism (54, 144).

The developmental patterns producing different morphs also need further
study. In several cases, heterochrony (1) has been emphasized (4, 22, 89,
149). A release from developmental and/or functional constraints can partly
explain why some species are polymorphic and others are not. It has been
suggested that a release of functional constraints in the jaw structure of cichlids
allowed diversification in their feeding behavior, and that this partly explains
their extensive radiation (75, 89, 90). In this case, phenotypic plasticity could
either increase the rate of speciation or buffer against extinction, both leading
to a net increase in species over time (89).

Alternative Adaptive Phenotypes and Speciation
The potential role resource polymorphisms play in speciation has been debated
for decades (13, 14, 32, 51, 82, 94, 156, 190, 191). Most models and much
of the debate center on whether the ecological separation caused by resource
polymorphisms is sufficient to promote assortative mating and reproductive iso-
lation in sympatry (14, 32, 82). Most alleged examples of sympatric speciation
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are correlative in that sympatric speciation is inferred from the dispersion pat-
tern of already discrete species or races, as in some insects (174). A convincing
example in vertebrates is found in some cichlids from Cameroon, West Africa
(181): Mitochondrial DNA analysis of cichlid species flocks endemic to two
crater lakes strongly suggests that each lake contains a monophyletic group
of species that originated sympatrically (137). Species within lakes are more
closely related to each other than they are to riverine species or species from
adjacent lakes, and there are no geographic features of the lakes that could have
provided geographic isolation. While polymorphisms were not demonstrated
in this instance, they are likely to have been an intermediate step, given the
many lakes in East and West Africa that contain polymorphic populations of
cichlids (93, 95).

The amount of gene flow among sympatric morphs is variable and, if re-
stricted, may lead to divergence and speciation (10, 34, 35, 56, 59, 87, 175–177).
This may occur through either postzygotic mechanisms such as reduced fitness
of hybrids (90, 94, 139, 198) or prezygotic mechanisms such as spatial and tem-
poral segregation in breeding (often promoted by philopatry) and differences in
breeding behavior or mate choice (9, 26, 27, 33, 80, 86, 91, 94, 124, 128, 132,
146, 152, 155, 175). These kinds of isolating mechanisms may coevolve with
the phenotypic attributes such as size and color and the ecological segregation
that characterize adaptations of morphs in their respective subniches (27, 91,
93, 128, 146, 152, 155). Among freshwater fish populations, segregation has
occurred repeatedly within the same freshwater system and even within the
same lake (10, 35, 56, 59, 86, 175), and the degree of genetic divergence be-
tween sympatric morphs is highly variable. In some cases, gene flow may be
unimpeded, while in others, sympatric types may appear partially or completely
reproductively isolated (10, 34, 56, 59, 86).

Niche-specific adaptation, typical of resource polymorphisms, is a key
element in the divergence with gene flow speciation model (30, 32, 123, 154).
A recent review (123) of laboratory studies involvingDrosophilafinds con-
siderable support for the model when positive assortative mating occurs as
a by-product of pleiotropy and/or genetic hitchhiking. The model proposes
that speciation may occur under a range of selection intensities and levels of
gene flow lying along a continuum: At one extreme is a population in a ho-
mogeneous environment with selection for two opposing phenotypes, and at
the other extreme are parapatric populations experiencing differing directional
selective forces in each. Reproductive isolation occurs if traits important in
isolation are correlated or if they are the same as the traits important in re-
source use. Rice & Hostert (123) refer to this as the single-variation model
of divergence-with-gene-flow speciation. In the model, reproductive isolation
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evolves through pleiotropy and/or genetic hitchhiking (sampling error–induced
linkage disequilibrium between alleles affecting positive assortative mating and
alleles affecting divergently selected characters) (123). Particularly salient is
that a complete barrier to gene flow is unnecessary for speciation to occur if
selection is strong and the trait under selection is also important in reproductive
isolation. One could imagine just such a situation if morphs tended to reproduce
where they fed and discrete resources occurred in different habitats. We believe
this model has particular merit in understanding the possible role of resource
polymorphisms in speciation. Incorporating aspects (Figure 1) of this model,
resource polymorphisms could lead to speciation in the following steps: (a), (a),
. . . , 1) invasion or exploitation of new or unexploited resource (“open” niches),
2) a decrease in intraspecific competition, 3) multifarious (usually divergent)

Figure 1 Generalized schematic showing possible steps and mechanisms leading to resource
polymorphisms and speciation.
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selection and evolution of a polymorphism, and 4) reduced gene flow and the
evolution of prezygotic reproductive isolation mechanisms (150). If the model
proves correct, as laboratory studies suggest, perhaps the reason resource poly-
morphisms not more common is that they more likely lead to speciation than
to stable polymorphisms.

CONCLUDING REMARKS

Resource polymorphisms have been largely underestimated as a diversifying
force and are likely more common and important in speciation than is currently
appreciated. Many of the mechanisms that produce and maintain resource
polymorphisms are similar among diverse taxa. Recognizing that many of the
differences that separate morphs may be subtle, but nevertheless discrete, will
likely lead to identification of more examples, especially in taxa where there is a
tendency to assume that discontinuous morphotypes represent distinct species.
The respective roles of development, phenotypic plasticity, genetics, natural
selection, and ecology in maintaining and producing resource polymorphism,
and a consideration of why polymorphisms appear more common in some taxa
than others are fruitful areas for further investigation.
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