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Variation in foraging behavior facilitates resource
partitioning in a polymorphic cichlid, Herichthys minckleyi
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Abstract We examined foraging behavior (microhab-
itat use and feeding behavior) in a trophically
polymorphic cichlid fish, Herichthys minckleyi, to
address several questions regarding resource parti-
tioning in this threatened species. These include: (1)
do morphotypes demonstrate different foraging
behaviors? (2) do individuals within a morphotype
vary in their foraging behavior (e.g. are some
individuals specialists, only using a subset of avail-
able resources, while other are generalists)? (3) do
foraging behaviors vary between isolated pools? (4)
do foraging behaviors vary across seasons? We
quantified microhabitat use and feeding behavior for
over 100 individuals (of two morphotypes) feeding
freely in two isolated pools (populations) and across
two seasons (winter and summer). We found differ-
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ences in foraging behavior between morphotypes and
individual specializations within morphotypes; i.e.
some individuals specialize on certain food resources
by using a few feeding behaviors within a subset of
microhabitats, whereas others employ a range feeding
behaviors across many microhabitats. Foraging be-
havior also varied between pools and across seasons.
This spatial and temporal variation in foraging
behavior and resource use may serve to maintain this
polymorphism, as the relative fitness of the each
morph may vary over space and time.

Keywords Intra-specific variation - Individual
specialization - Feeding ecology -
Trophic polymorphism

Introduction

Trophic polymorphisms are intraspecific variations in
feeding structures that may reduce intra-specific com-
petition (McLaughlin et al. 1999) and facilitate speci-
ation (Darwin 1859; Skulason and Smith 1995). In
addition to morphological differences in feeding
structures, morphotypes (morphs) may forage in
different microhabitats, exploit different food resources
and employ different feeding behaviors (e.g. Robinson
and Wilson 1996; Jonsson and Jonsson 2001).
Variation in individual foraging repertoires can also
occur within a population regardless of morphology
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(Bolnick et al. 2003). In some cases, even individuals
with the same trophic morphology, residing in the
same population appear to specialize on specific
microhabitats or food resources (Fry et al. 1999).
These inter-individual differences in foraging behavior
may be important in further decreasing intra-specific
competition (Bolnick et al. 2003).

Foraging behavior can also vary at larger scales.
For instance, foraging behaviors are related to local
resource availability and different behaviors are often
demonstrated by spatially distinct groups or popula-
tions within a species (Huskey and Turingan 2001;
Mittelbach et al. 1992). In addition to this spatial
variation, populations often encounter temporal differ-
ences in resource availability that lead to changes in
resource use (Weliange and Amarasinghe 2003). In
the case of either spatial or temporal variation in re-
source availability, populations often use different
foraging behaviors to exploit varying resources.

Herichthys minckleyi, a cichlid fish, is endemic to
the spring-fed pools of the Cuatro Ciénegas basin in
Coahuila, Mexico and demonstrates at least three
distinct trophic morphotypes, or ‘morphs’ (Kornfield
and Taylor 1983). The two most abundant morphs are
distinguished by differences in pharyngeal jaw mor-
phology. (The third morph is a piscivorous morph at
low frequency in the population.) Different pharyn-
geal jaw morphologies are at least partially genetically
determined and appear to be adaptations for processing
different types of food (Liem and Kaufman 1984). In
H. minckleyi, the ‘papilliform’ morph has narrow,
needle-like teeth, and gracile pharyngeal jawbones
and associated muscles (Liem and Kaufman 1984).
This morph feeds primarily on detritus, algae, and
soft-bodied invertebrates (Smith 1982) and is efficient
at processing vegetation (Hulsey et al. 2005). The
‘molariform’ morph has large, molar-like teeth, and
robust pharyngeal jawbones and associated muscula-
ture. In addition to detritus, algae, and soft-bodied
invertebrates, this morph also consumes snails and is
capable of crushing much harder food items than the
papilliform morph (Liem and Kaufman 1984; Hulsey
et al. 2005). In addition, evidence suggests that the
morphs can segregate by microhabitat in at least one
pool habitat in the Cuatro Ciénegas basin (Swanson
et al. 2003; Cohen et al. 2005).

This intraspecific variability in morphology, habitat
and resource use, make H. minckleyi an excellent
system to examine complex variation in foraging
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behavior within a species. In addition, the species is
endemic to the threatened Cuatro Ciénegas basin and
we hope that information about species ecology will
help in the management and conservation of the
species and its habitat (see Hendrickson et al. 2007).
Here, we quantify the foraging behavior repertoires of
individuals of the Cuatro Ciénegas cichlid using two
interrelated aspects of foraging behavior: (1) feeding
microhabitat, or the location where foraging occurs,
and (2) feeding behavior, or the distinct movement
pattern used by an individual to capture food items.
Using this information we address the following
questions: (1) do morphotypes demonstrate different
foraging behaviors? (2) do individuals within a
morphotype vary in their foraging behavior (e.g. are
some individuals specialists, only using a subset of
available resources, while other are generalists)? (3)
do foraging behaviors vary between isolated pools?
(4) do foraging behaviors vary across seasons?

Methods
Field sites

Foraging behavior was recorded in two spring-fed
pools (locally, ‘pozas’) of the Cuatro Ciénegas basin
in Coahuila, Mexico: Mojarral Oeste, (1,298 m?
surface area, 5 m deep), and Escobedo, (776 m?
surface area, 7 m deep), both of which contain
multiple, distinct microhabitats. In Mojarral Oeste,
there is a stromatolite travertine deposit surrounding
the large inflow spring, which forms a hard shelf
covered with filamentous cyanobacteria and diatoms.
The margins of Oeste are covered with thick, soft,
flocculent (particulate) material, containing high
densities of hydrobiid snails (Kloeppel 2002). Oeste
also contains patches of gravel substrate and sub-
merged and emergent water lilies, Nymphea sp.. In
Poza Escobedo, most of the benthos is covered with
deep, soft flocculent material, but there are also patches
of travertine deposit and gravel substrate, and a small
amount of emergent vegetation. The flocculent substrate
in Escobedo has extremely high densities of hydrobiid
snails relative to Oeste and other pools in Cuatro
Ciénegas (Kloeppel 2002). Herichthys minckleyi is the
dominant and largest fish species in both of these
pools, and it co-occurs with several other smaller fish
species in both locations (see Hendrickson et al. 2007
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for more detailed descriptions). We choose these pools
because they have distinct microhabitats and isolated
and confined fish populations.

Behavioral recordings

Individuals of H. minckleyi were captured on 4-5
January 2001 and 30-31 May 2001 using hook and
line and gill nets. After capture, fish were anesthetized
with twenty drops of clove oil, Eugenia caryophyllata,
in approximately 8 1 of water (Munday and Wilson
1997). Individuals were categorized (based on
descriptions by Kornfield and Taylor 1983) into
morphotypes by examining pharyngeal teeth through
an otoscope. Although pharyngeal tooth morphology
represents a continuum, pronounced molariform and
papilliform morphology is common and intermediates
are relatively uncommon in both habitats. Only
individuals with clear molariform or papilliform
morphology (most of the individuals captured) were
used this study. Fish were measured (mass, standard
length), photographed, tagged, allowed to recover in a
tub of freshwater for approximately 3 min, and returned
to the pool. During tagging, fish were labeled with
uniquely numbered, plastic identification tags that were
sutured to the epaxial musculature near the anterior base
of the dorsal fin using absorbable dental sutures.
Absorbable sutures were chosen to minimize impact
on fish populations; individuals could be identified in
the field for up to 1 week, after which the sutures
softened and the tags fell off.

Foraging behavior was recorded in the pools from
7-11 January 2001 and 3-9 June 2001 using a digital-
video camera (Sony DCR TRV 900 or JVC GR DVL
9800) in an underwater housing. Recordings were
made during 1-h periods, four times per day, for five
consecutive days in Mojarral Oeste in January (34
molariforms and 36 papilliforms recorded), and
alternate days in both pools for 7 days total in June
(21 molariforms and 19 papilliforms in Mojarral
Oeste recorded; 10 molariforms and 20 papilliforms
in Escobedo recorded). Feeding events were recorded
using a mixture of ‘scan sampling’ and ‘focal animal
sampling’ (Altmann 1974) and no individual was ever
recorded for more than 1 min at a time. The observer
could not discern morphotype or individual number
while recording feeding events, which prevented
biased sampling, while individual numbers were
obtained from the digital images.

Feeding events were scored from the digital
videotapes for (1) microhabitat use and (2) type of
feeding behavior. To avoid problems of dependence
among the samples, sequential feeding events
recorded from a given individual were considered to
be a single observation of a behavior within that
microhabitat. Additional observations were only
recorded when an individual changed either behavior
type or microhabitat. Therefore, multiple observations
were used for many individuals, but these observa-
tions represent independent events because they were
spatially and temporally separated (Altmann 1974;
Kramer and Schmidhammer 1992). A total of 406
feeding events were analyzed: 159 observations of
molariform individuals and 247 observations of
papilliform individuals. Five categories were used to
identify microhabitat type: (1) water column and
surface (column), (2) submerged or emergent vegeta-
tion or algae (vegetation), (3) gravel substrates
(gravel), (4) hard, travertine shelf (travertine), and
(5) soft, flocculent sediments (flock).

A sub-sample of these events (n=111) with
exceptionally clear images were visually categorized
into four behaviors based primarily on published
descriptions of feeding behaviors in cichlids (Liem
1979; Swanson et al. 2003): (1) ‘suction feeding,’
where the food item appeared to be sucked into the
fish’s mouth; (2) ‘scraping,” where the fish pressed its
jaws against a hard surface and removed food items
via abrasion; (3) ‘diving,” where the fish inserted its
head deep into the soft sediments; (4) ‘scooping,’
where the fish scooped a mouthful of soft sediment
from the surface of the substrate with its lower jaw.
For these sequences, movements of the head and
body during feeding (i.e. feeding kinematics), were
measured using a custom measurement program.
Kinematic variables included gape (the distance
between the upper and lower jaw tips), gape angle
(the angle formed by the open jaws), substrate angle
(the angle made by the body of the fish relative to the
substrate), premaxillary protrusion (the distance the
upper jaw protruded anteriorly from the cranium), and
substrate depth (the distance the fish penetrated into
the substrate). Quantitative comparisons among these
variables (taken from this sub-set of the data; not
shown) verified that the visual categories were
distinct behaviors: based on repeatable, measurable
differences among movement patterns (Liem 1979;
Swanson et al. 2003). Consequently, additional events
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were categorized visually (using the four feeding
behaviors described above) and then added to the
overall data set. In this manner, we categorized the
microhabitat use and feeding behavior for all 406
feeding events.

Statistical analysis

A series of x? ‘goodness-of-fit” tests were conducted
to determine if groups of H. minckleyi differed in their
foraging behavior frequencies (feeding behavior and
microhabitat) between morphotypes, pools and sea-
sons. For all x? tests, expected contingency tables
were constructed using the total number of feeding
events in each category (behaviors or microhabitats)
and the total number of feeding events for each factor
(pool, season, morph). For all foraging behavior
comparisons, two x° tests were completed: one test
compared feeding behaviors and another compared
microhabitat use (using the four feeding behavior and
five microhabitat categories described above). These
x° tests determined if the frequencies of observed
events differed from the null model of no difference
between factors in frequency of behavior or micro-
habitat use. These tests did not address behavior in
relation to resource or habitat availability, but rather
whether there were differences in behavior frequen-
cies between groups.

The first set of x* tests compared summer
observations between the two pools to test for
potential differences in foraging behaviors across
habitats. Based on the results of this test, all Mojarral
Oeste and Escobedo observations were analyzed sepa-
rately. The second  test assessed potential differences
in foraging behavior between winter and summer
sampling periods in Mojarral Oeste. Within each pool,
and within each season (for the Mojarral Oeste data),
additional y* tests were used to test for differences in
foraging behavior between morphotypes.

To assess the level of individual specialization
within the population, we estimated the likelihood of
the foraging behavior repertoire of each individual
being the same as the population by calculating a
standardized likelihood value (W) of each individual
being randomly drawn from the population mean
(Petraitis 1979; Bolnick et al. 2002). This value is
related to the \° distribution, and allowed us to
determine a p value for each individual that estimated
the probability of that individual’s foraging repertoire
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being drawn randomly from the population mean.
These calculations were done for each distinct group
(pool, season, morph), based on the results of the
previous x* tests (see results below). For example,
because we observed differences in overall frequen-
cies of foraging behaviors between morphs, seasons
and pools, individuals were only compared to their
morph in the pool and season in which they were
recorded.

Results

Although the x? tests were conducted in the order:
pool comparison, season comparison, morph compar-
isons, and individual comparisons, morph differences
were the focus of this study and will be addressed
first. Comparisons in foraging behavior between
morphotypes revealed several distinct patterns. For
the winter sampling period in Mojarral Oeste, the two
morphs showed differences in both microhabitat use
and feeding behavior (behaviors; X2(3)=9.52, p<0.05,
microhabitats; x2(3)=9.13, p<0.05). Within this sam-
ple, papilliform individuals used the scrape and scoop
behaviors more than expected and tended to feed on
the travertine substrate. Molariform individuals used
the dive behavior more than expected and tended to
feed in the flocculent and gravel substrates. In the
summer sampling period in Mojarral Oeste, there was
no difference in feeding behaviors between morphs
(X*3»=3.53, p=0.32), but there was a difference in
microhabitat use (X2(4)=12.6, p<0.05). The molari-
form individuals used the gravel substrates more than
the papilliform individuals, and were never observed
feeding in the vegetation or the water column. The
summer sampling in Poza Escobedo demonstrated yet
another pattern of foraging behavior across morpho-
types. Here morphs did not use microhabitats at
different frequencies (x2(4)=5.67, p=0.22; Fig. la),
but did use feeding behaviors at different frequencies
(X2(3)=9.13, p<0.05; Fig. 1b). Under these condi-
tions, molariform individuals often employed scoop-
ing and suction feeding behaviors, but were never
observed using diving or scraping behaviors.
Individuals within each morphotype (within each
population) demonstrated individual specialization in
both feeding microhabitat and feeding behavior mode.
Based on calculations of the standardized likelihood
value (Wi) for each grouping identified by the x>
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Fig. 1 An example of frequency bar plots comparing micro-
habitat (a) and behavior type (b) across morphotypes. These are
for Poza Escobedo during the summer sampling period. There
is no difference in microhabitat use, but the papilliforms used
the dive and scrape behavior at a higher frequency than the
molariforms. See text for explanations of microhabitat types
and behaviors

analysis, 16 of the 63 individuals used in the analysis
significantly diverged from the average population
frequency of microhabitat or feeding behavior use. In
fact, most (7 out of 10) of the groups analyzed
demonstrated some degree of individual specializa-
tion. A finding of no significant individual speciali-
zation could be due to an individual demonstrating
foraging behaviors at the same frequencies as the

group, or could be simply a consequence of a low
sample size for that individual. Thus, this method will
tend to underestimate individual specialization.

Comparisons of foraging behaviors between pools
(between Escobedo and Mojarral Oeste in the
summer) revealed that fish feed in different micro-
habitats across the two pools (X2(4)=27.60, p<0.05;
Fig. 2a) and use feeding behaviors at different
frequencies (X2(3)=23.22, p<0.05; Fig. 2b). Fish used
more of the scooping behavior than expected in
Escobedo and more of the scraping behavior in
Mojarral Oeste. In Mojarral Oeste, fish often fed on
the large travertine shelf. In Escobedo, fish often fed
in the abundant flocculent substrates.

Seasonal variation in foraging behavior was also
sometimes evident. In Mojarral Oeste, microhabitat
use did not appear to change across seasons (x4)=
4.7, p=0.45; Fig. 3a). Feeding behaviors were
employed at different frequencies between seasons
(x*3)=13.71, p<0.05; Fig. 3b): fish used more
scraping and diving behaviors during the summer,
whereas they used more suction feeding during the
winter.

Discussion

In Herichthys minckleyi, foraging behavior varies
markedly between two trophic morphotypes, but also
varies among individuals of a morphotype, across
space (populations within two pools) and over time
(two seasons in one pool). The hypothesis that trophic
morphotypes behaviorally enhance resource partition-
ing was supported by our finding that the two morphs
differed in some aspect of foraging under all of the
conditions we examined. However, the amount of
behavioral partitioning varied both temporally and
spatially. Fish in Mojarral Oeste in the winter, for
example, demonstrated morphotype differences in
both microhabitat use and feeding behavior. In the
Mojarral Oeste summer sample, morphs still fed in
different microhabitats, but there was no difference in
the frequency of use of feeding behaviors. This
suggests that although the morphs may still partition
the habitat spatially, during this time of the year
morphs may be exploiting similar food resources that
are seasonally abundant within many microhabitats
(e.g., soft-bodied invertebrates). In contrast, in Esco-
bedo, morphs did not use microhabitats differently,
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Fig. 2 Frequency bar plots comparing (a) microhabitat use and
(b) feeding behavior type across habitats between the Mojarral
Oeste and Poza Escobedo sites during the summer sampling
period. Foraging in Escobedo was more likely in the soft
flocculent microhabitat and fish were more likely to use the
scooping behavior. In Mojarral Oeste, foraging was more likely
on the hard travertine microhabitat and fish were more likely to
exhibit the scraping behavior. See text for explanations of
microhabitat types and behaviors

but they did employ different feeding behaviors
within microhabitats. We note that Escobedo is
dominated by the soft flocculent microhabitat (Kloeppel
2002) and suggest that fish may be compelled to forage
with in this microhabitat. Morphs did employ feeding
behaviors at different frequencies, suggesting that
when microhabitat choice is limited, morphs can
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continue to segregate food resources by employing
different feeding behaviors. Combined, the data from
the two pools provide a complex picture of behavioral
variation across morphotypes of H. minckleyi. Papilli-
form and molariform morphotypes can partition
resources based on microhabitat, or feeding behavior
within microhabitat, or both — and these patterns vary
across both space and time. In spite of the differences
in microhabitat and behavior use across seasons and
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Fig. 3 Frequency bar plot comparing (a) behavior type use and
(b) microhabitat use across seasons between winter and
summer sampling periods in Mojarral Oeste. In the summer
fish were observed to perform the dive and scrape behavior
more than in the winter. Microhabitat use was not different. See
text for explanations of microhabitat types and behaviors
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pools, we note that morphs consistently appear to
partition resources via some aspect of foraging
behavior.

Individual specialization independent of morphol-
ogy may allow further resource partitioning both
within and between morphs. We found evidence of
individual specialization for particular microhabitats
or behaviors (or both) across the population. Al-
though some individuals demonstrate a foraging
repertoire that is indistinguishable from the overall
repertoire for the group, others appear to be specialists
that were observed multiple times feeding primarily in
a single microhabitat or employing a single feeding
behavior. This individual specialization has in fact
been suggested as a mechanism for the evolution of
trophic polymorphism, where individuals in a mono-
morphic population may select feeding behaviors that
enable them to exploit very small morphological
variations. If a particular foraging behavior becomes
associated with a certain morphological variation, and
there is a genetic basis for the variation, this could
ultimately yield divergent morphotypes (Sktilason and
Smith 1995; McLaughlin 2001).

We suggest that observed differences in foraging
behavior between pools are related to the availability
of microhabitats within the pools and the food
resources found within those microhabitats. The
bottom of Escobedo is almost entirely covered with
deep, soft flocculent sediments that contain very high
snail densities (Kloeppel 2002); both trophic morpho-
types fed more often in the flocculent substrate in
Escobedo than in Mojarral Oeste. Mojarral Oeste has
more travertine substrate than Escobedo and lower
snail densities in the flocculent substrate (Kloeppel
2002). Variation in habitat availability may require
individuals to use different foraging behaviors to
exploit the foods present in the most prevalent
microhabitats.

We also observed seasonal differences in foraging
behavior in Mojarral Oeste. Other aquatic systems
have been shown to demonstrate changes in foraging
patterns that correspond to seasonal changes in food
abundance (David and Closs 2003). However, we did
not initially expect Cuatro Ciénegas pools to vary in
this manner, due to nearly invariant (and warm)
temperatures (Dinger 2001; Kloeppel 2002). There is
little seasonal variation in abundance or diversity of
aquatic insects, amphipods, polychaetes (Dinger
2001), or snails (Kloeppel 2002) in Cuatro Ciénegas

pools. However, changes in photoperiod may trigger
other seasonal changes in the pools, such as variation
in the abundance of particular life history stages of
aquatic invertebrates, or changes in the primary
productivity of the pools that may affect the foraging
ecology of H. minckleyi. More data will be needed to
test these hypotheses.

Because we have only a single sample for each, we
cannot conclude that the differences we observed
between pools or seasons are consistently present
across other pools in the system or across years.
However, the data do demonstrate complex variability
in the system. This measurable variation in resource
use across space and time suggests a complex,
dynamic pattern, which may explain the long-term
maintenance of morphological variation within H.
minckleyi. Morphotypes may have different relative
fitnesses in different pool habitats (based on the
different resource availabilities). Thus habitat vari-
ability may help maintain morphological differences
among individuals of the species, because either
morphotype could have an advantage in some subset
of the species range (Snyder and Chesson 2003). The
fact that different morph ratios are found in different
Cuatro Ciénegas pools (Stephens 2002) supports this
idea. Variation in resource availability over time may
similarly help maintain polymorphism in the popula-
tion (Roughgarden 1983; Snyder and Chesson 2003).

Our findings also have implications for the
conservation of H. minckleyi (considered in danger
of extinction) and its threatened habitat. There is
currently a management plan in place for the species
(Instituto Nacional de Ecologia — SEMARNAP. 1999.
Programa de Manejo del Area de Proteccion de Flora y
Fauna Cuatrociénegas. Instituto Nacional de Ecologia,
Meéxico, D.F.). However, this plan does not directly
address the maintenance of habitat diversity on several
spatial scales. We suggest that the maintenance of this
complex habitat diversity may be critical for the
survival of the species.
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